Téléchargez le livre :  Long-Term Structural Health Monitoring by Remote Sensing and Advanced Machine Learning

Long-Term Structural Health Monitoring by Remote Sensing and Advanced Machine Learning

A Practical Strategy via Structural Displacements from Synthetic Aperture Radar Images
de

, ,

Éditeur :

Springer

Paru le : 2024-02-21

This book offers an in-depth investigation into the complexities of long-term structural health monitoring (SHM) in civil structures, specifically focusing on the challenges posed by small data and environmental and operational changes (EOCs). Traditional contact-based sensor networks in SHM produce...
Voir tout
Ce livre est accessible aux handicaps Voir les informations d'accessibilité
Ebook téléchargement , DRM LCP 🛈 DRM Adobe 🛈
52,74
Ajouter à ma liste d'envies
Téléchargement immédiat
Dès validation de votre commande
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

À propos


Éditeur

Collection
n.c

Parution
2024-02-21

Pages
110 pages

EAN papier
9783031539947

Prof. Alireza Entezami has been an assistant professor in the Department of Civil and Environmental Engineering (DICA) at Politecnico di Milano, Italy, since November 2022. His current role also includes co-supervision of a research project granted by the European Space Agency (ESA), which employs data mining and machine learning techniques for monitoring the structural integrity of large infrastructures using earth observation. Prior to joining the DICA department as a faculty member, he was a post-doctoral research fellowship selected by ESA, working in the DICA at Politecnico di Milano since May 2021. In April 2020, he received a Ph.D. in Structural, Seismic, and Geotechnical Engineering from Politecnico di Milano with Cum Laude degree His research interests span from model-driven structural damage detection to data-driven structural health monitoring, with the focus on large civil infrastructures. Dr. Bahareh Behkamal, a dynamic researcher in the realm of computer science, has been contributing to the fields of artificial intelligence, machine learning, deep learning, and health monitoring of structures through her expertise. Prior to her current engagement, from August 2018 to December 2021, she was a researcher, collaborating with the Department of Applied Science and Technology at Politecnico di Torino, Turin, Italy. Since January 2022, she has been serving as a post-doctoral researcher in the Department of Civil and Environmental Engineering (DICA) at Politecnico di Milano, contributing to a project focused on the application of artificial intelligence and machine learning in addressing natural hazards and hydrological challenges. Additionally, since April 2023, she has been a post-doctoral research fellowship of the European Space Agency (ESA), continuing her work at DICA, Politecnico di Milano. Prof. Carlo De Michele has been a professor in the Department of Civil and Environmental Engineering (DICA) at Politecnico di Milano since June2019. He served as an associate professor at Politecnico di Milano from 2008 to 2019, following his tenure as an assistant professor in the same department since 1999. In his current role, he also supervises research sponsored by the European Space Agency (ESA). This project leverages advanced data mining and machine learning methodologies to monitor large-scale infrastructures, utilizing data gathered from earth observation and remote sensing. His research interests are broad and impactful, encompassing statistics, stochastic and multivariate modeling, and climate and environmental variability effects. Prof. De Michele has also made significant contributions to understanding precipitation dynamics, hydrological safety of dams, the water-energy nexus, and compound climate-related extremes. Mentoring has been a crucial part of his career. 

Caractéristiques détaillées - droits

EAN PDF
9783031539954
Prix
52,74 €
Nombre pages copiables
1
Nombre pages imprimables
11
Taille du fichier
14787 Ko
EAN EPUB
9783031539954
Prix
52,74 €
Nombre pages copiables
1
Nombre pages imprimables
11
Taille du fichier
25272 Ko

Suggestions personnalisées